Part Number Hot Search : 
AV21W OM5320SR SUPP7 100CT 100CT 250BZX BU450 YG982C6R
Product Description
Full Text Search
 

To Download IRF7907PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 97066
IRF7907PBF
HEXFET(R) Power MOSFET
Applications l Dual SO-8 MOSFET for POL Converters in Notebook Computers, Servers, Graphics Cards, Game Consoles and Set-Top Box Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l Improved Body Diode Reverse Recovery l 100% Tested for RG l Lead-Free
VDSS
30V
RDS(on) max
Q1 16.4m:@VGS = 10V Q2 11.8m:@VGS = 10V
8 7 6 5 D2 D2 D1 D1
ID
9.1A 11A
S2 G2 S1 G1
1 2 3 4
SO-8
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C PD @TA = 70C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current c Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range 9.1 7.3 76 2.0 1.3 0.016 -55 to + 150
Q1 Max.
30 20
Q2 Max.
Units
V
11 8.8 85 2.0 1.3 0.016 W/C C W A
Thermal Resistance
RJL RJA Parameter Junction-to-Drain Lead g Junction-to-Ambient fg
Q1 Max.
20 62.5
Q2 Max.
20 62.5
Units C/W
www.irf.com
1
1/4/06
IRF7907PBF
BVDSS VDSS/TJ
Static @ TJ = 25C (unless otherwise specified)
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Q1&Q2 Q1 Q2 Q1 Q2 VGS(th) VGS(th)/TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. 30 --- --- --- --- --- --- 1.35 --- --- --- --- --- --- 19 24 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.024 0.024 13.7 17.1 9.8 11.5 1.8 -4.6 -4.9 --- --- --- --- --- --- 6.7 14 1.3 3.0 0.7 1.3 2.5 4.9 2.2 4.8 3.2 6.2 4.5 9.0 2.6 3.0 6.0 8.0 9.3 14 8.0 13 3.4 5.3 850 1790 190 390 88 190 Max. --- --- --- 16.4 20.5 11.8 13.7 2.35 --- --- 1.0 150 100 -100 --- --- 10 21 --- --- --- --- --- --- --- --- --- --- --- --- 4.7 5.0 --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- --- Min. --- --- --- --- --- --- --- --- --- --- Typ. --- --- --- --- --- --- 12 16 4.1 5.9 Max. 2.8 2.8 76 85 1.0 1.0 18 24 6.1 8.9 Conditions Units VGS = 0V, ID = 250A V V/C Reference to 25C, ID = 1mA VGS = 10V, ID = 9.1A VGS = 4.5V, ID = 7.3A VGS = 10V, ID = 11A VGS = 4.5V, ID = 8.8A Q1: VDS = VGS, ID = 25A V mV/C Q2: VDS = VGS, ID = 50A m A nA S VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125C VGS = 20V VGS = -20V VDS = 15V, ID = 7.0A VDS = 15V, ID = 8.8A
RDS(on)
Static Drain-to-Source On-Resistance
e e e e
nC
Q1 VDS = 15V VGS = 4.5V, ID = 7.0A Q2 VDS = 15V VGS = 4.5V, ID = 8.8A
nC
VDS = 16V, VGS = 0V
Gate Resistance
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Q1 VDD = 15V, VGS = 4.5V ID = 7.0A ns Q2 VDD = 15V, VGS = 4.5V ID = 8.8A Clamped Inductive Load VGS = 0V VDS = 15V = 1.0MHz
pF
Avalanche Characteristics
EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current
d
Q1 Max. 10 7.0
Q2 Max. 15 8.8
Units mJ A
Diode Characteristics
IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Units Conditions A MOSFET symbol showing the A integral reverse p-n junction diode. TJ = 25C, IS = 7.3A, VGS = 0V V TJ = 25C, IS = 8.8A, VGS = 0V Q1 TJ = 25C, IF = 7.0A, ns VDD = 15V, di/dt = 100A/s nC Q2 TJ = 25C, IF = 8.8A, VDD = 15V, di/dt = 100A/s
e e e e
2
www.irf.com
Typical Characteristics Q1 - Control FET
100
TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
IRF7907PBF
Q2 - Synchronous FET
100
TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
10
BOTTOM
10
BOTTOM
1
1
0.1
2.3V 60s PULSE WIDTH Tj = 25C
0.1
2.3V
0.01
60s PULSE WIDTH Tj = 25C
10 100
0.01 0.1 1 10 100
0.1
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
Fig 2. Typical Output Characteristics
100
TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
ID, Drain-to-Source Current (A)
BOTTOM
ID, Drain-to-Source Current (A)
BOTTOM
10
10
2.3V
1 0.1 1
60s PULSE WIDTH Tj = 150C
10 100
2.3V
1 0.1 1
60s PULSE WIDTH Tj = 150C
10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
100.0 100.0
Fig 4. Typical Output Characteristics
ID, Drain-to-Source Current()
10.0
ID, Drain-to-Source Current()
TJ = 150C
10.0
TJ = 150C
1.0
TJ = 25C VDS = 15V
1.0
TJ = 25C VDS = 15V
60s PULSE WIDTH
0.1 1.0 2.0 3.0 4.0 5.0 0.1 1.0 2.0
60s PULSE WIDTH
3.0 4.0 5.0
VGS, Gate-to-Source Voltage (V)
VGS, Gate-to-Source Voltage (V)
Fig 5. Typical Transfer Characteristics
Fig 6. Typical Transfer Characteristics
www.irf.com
3
IRF7907PBF
Q1 - Control FET
10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd
Typical Characteristics Q2 - Synchronous FET
10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd
C, Capacitance (pF)
1000
Ciss
C, Capacitance (pF)
Ciss
1000
Coss
100
Crss
Coss
Crss
10 1 10 100 100 1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage
12
VGS, Gate-to-Source Voltage (V)
12
VGS, Gate-to-Source Voltage (V)
ID= 7.0A VDS = 24V
10 8 6 4 2 0 0 4
VDS= 15V VDS= 6.0V
10 8 6 4 2 0
ID= 8.8A
VDS = 24V VDS= 15V VDS= 6.0V
8
12
16
0
5
10
15
20
25
30
QG Total Gate Charge (nC)
QG Total Gate Charge (nC)
Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA LIMITED BY R DS (on)
OPERATION IN THIS AREA LIMITED BY R DS (on) 100sec
100 1msec
100 1msec
10
100sec
10
1
10msec TA = 25C Tj = 150C Single Pulse 0.1 1 100msec
1
10msec TA = 25C Tj = 150C Single Pulse 0.1 1 100msec
0.1
0.1
0.01 10 100 VDS , Drain-to-Source Voltage (V)
0.01 10 100 VDS , Drain-to-Source Voltage (V)
Fig 11. Maximum Safe Operating Area
Fig 12. Maximum Safe Operating Area
4
www.irf.com
Typical Characteristics Q1 - Control FET
RDS(on) , Drain-to-Source On Resistance
IRF7907PBF
Q2 - Synchronous FET
1.5
ID = 9.1A
RDS(on) , Drain-to-Source On Resistance
1.5
ID = 11A
VGS = 10V
VGS = 10V
(Normalized)
(Normalized)
1.0
1.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160
Fig 13. Normalized On-Resistance vs. Temperature
100.0
TJ, Junction Temperature (C)
TJ, Junction Temperature (C)
Fig 14. Normalized On-Resistance vs. Temperature
100.0
ISD , Reverse Drain Current (A)
ISD , Reverse Drain Current (A)
10.0
TJ = 150C
TJ = 150C
10.0
1.0
1.0
TJ = 25C VGS = 0V
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
TJ = 25C VGS = 0V
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
VSD , Source-to-Drain Voltage (V)
VSD , Source-to-Drain Voltage (V)
Fig 15. Typical Source-Drain Diode Forward Voltage
m RDS (on), Drain-to -Source On Resistance ( )
40
Fig 16. Typical Source-Drain Diode Forward Voltage
m RDS (on), Drain-to -Source On Resistance ( )
40
ID = 8.8A
ID = 11A
30
30
20
TJ = 125C
20
TJ = 125C
10
TJ = 25C
TJ = 25C
10 2 4 6 8 10
0 2 4 6 8 10
VGS, Gate-to-Source Voltage (V)
VGS, Gate-to-Source Voltage (V)
Fig 17. Typical On-Resistance vs.Gate Voltage
Fig 18. Typical On-Resistance vs.Gate Voltage
www.irf.com
5
IRF7907PBF
Q1 - Control FET
10
Typical Characteristics Q2 - Synchronous FET
12
8
10
ID, Drain Current (A)
ID, Drain Current (A)
8
6
6
4
4
2
2
0 25 50 75 100 125 150
0 25 50 75 100 125 150
TJ, Ambient Temperature (C)
TJ, Ambient Temperature (C)
Fig 19. Maximum Drain Current vs. Ambient Temp.
2.2
Fig 20. Maximum Drain Current vs. Ambient Temp.
2.2
VGS(th, Gate threshold Voltage (V)
2.0
VGS(th, Gate threshold Voltage (V)
2.0
1.8
ID = 250A
1.8
ID = 250A
1.6
1.6
1.4
1.4
1.2
1.2
1.0 -75 -50 -25 0 25 50 75 100 125 150
1.0 -75 -50 -25 0 25 50 75 100 125 150
TJ, Temperature ( C )
TJ, Temperature ( C )
Fig 21. Threshold Voltage vs. Temperature
50
Fig 22. Threshold Voltage vs. Temperature
60
EAS, Single Pulse Avalanche Energy (mJ)
EAS, Single Pulse Avalanche Energy (mJ)
40
3.0A 3.5A BOTTOM 7.0A
TOP
ID
50
ID 3.8A 4.4A BOTTOM 8.8A
TOP
40
30
30
20
20
10
10
0 25 50 75 100 125 150
0 25 50 75 100 125 150
Starting TJ, Junction Temperature (C)
Starting TJ, Junction Temperature (C)
Fig 23. Maximum Avalanche Energy vs. Drain Current
Fig 24. Maximum Avalanche Energy vs. Drain Current
6
www.irf.com
IRF7907PBF
100
D = 0.50
Thermal Response ( Z thJA )
10
0.20 0.10 0.05 0.02 0.01
R1 R1 J 1 2 R2 R2 R3 R3 3 R4 R4 a 1 2 3 4 4
1
J
0.1
Ci= i/Ri Ci i/Ri
Ri (C/W) (sec) 2.288789 0.000137 7.167906 0.014957 36.98193 0.72461 16.07333 26.8
SINGLE PULSE ( THERMAL RESPONSE )
0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Ta
1 10 100
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1)
100
D = 0.50
Thermal Response ( Z thJA )
10
0.20 0.10 0.05 0.02 0.01
R1 R1 J 1 2 R2 R2 R3 R3 3 R4 R4 a 1 2 3 4 4
1
J
0.1
Ci= i/Ri Ci i/Ri
Ri (C/W) (sec) 1.848416 0.000164 11.29818 0.054158 34.97452 0.9598 14.3858 38.2
SINGLE PULSE ( THERMAL RESPONSE )
0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Ta
1 10 100
t1 , Rectangular Pulse Duration (sec)
Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2)
L
S2 G2 S1 G1
1 2 3 4
8 7 6 5
D2 D2 D1 D1
Co Vo GND
Cin Vin
Fig 27. Layout Diagram
www.irf.com
7
IRF7907PBF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
* * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Curent Inductor Current
Ripple 5% ISD
* VGS = 5V for Logic Level Devices Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01
I AS
Fig 29a. Unclamped Inductive Test Circuit
Fig 29b. Unclamped Inductive Waveforms
15V
90%
VDS L
VDS
DRIVER
RG
20V
D.U.T
IAS tp
10%
+ V - DD
A
VGS
td(on) tr td(off) tf
0.01
Fig 30a. Switching Time Test Circuit
Current Regulator Same Type as D.U.T.
Fig 30b. Switching Time Waveforms
Id Vds Vgs
50K 12V .2F .3F
VGS
-3mA
IG
ID
Current Sampling Resistors
Fig 31a. Gate Charge Test Circuit
8
+
D.U.T.
-
VDS
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 31b. Gate Charge Waveform
www.irf.com
IRF7907PBF
SO-8 Package Details
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
c D E e e1 H
1
2
3
4
.050 BAS IC .025 BAS IC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BAS IC 0.635 BAS IC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e
K L y
e1
A
K x 45 C 0.10 [.004] y 8X c
8X b 0.25 [.010]
A1 CAB
8X L 7
NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O A S UBS T RAT E. 3X 1.27 [.050] 6.46 [.255]
FOOT PRINT 8X 0.72 [.028]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF7101 (MOS FET ) DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) Y = LAS T DIGIT OF T HE YEAR WW = WEEK A = AS S EMBLY S IT E CODE LOT CODE PART NUMBER
INT ERNAT IONAL RECT IFIER LOGO
XXXX F7101
www.irf.com
9
IRF7907PBF
SO-8 Tape and Reel
Dimensions are shown in millimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, Q1: L = 0.41mH, RG = 25, IAS = 7.0A; Q2: L = 0.38mH, RG = 25, IAS = 8.8A. Pulse width 400s; duty cycle 2%.
When mounted on 1 inch square copper board. R is measured at TJ approximately 90C.
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/06
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRF7907PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X